THE BEHAVIOURAL APPROACH to SYSTEMS and CONTROL

Jan C. Willems University of Groningen, The Netherlands

The MathWorks 1^{st} March 2000

OUTLINE

- Introduction
- The behavior
- Modeling interconnected systems
- Elimination
- Controllability
- Representations
- Algorithmic issues
- Control as interconnection

SALIENT FEATURES

• Dynamical system = a behavior

input/output structure = important special case

First principles models⇒ latent variables

state variables = important special case

Modeling complex systemstearing & zooming

i/o cascade and feedback = limited special case

• Control = interconnection

feedback = important special case

SYSTEM

Let w_1, w_2, \dots, w_q be variables whose dynamic relation we wish to describe (modeling), or analyze, or design (control and synthesis)

Ingredients:

'Time set' \mathbb{T} (today, $\mathbb{T} = \mathbb{R}$ but framework covers \mathbb{Z} , DES, hybrid systems)

 w_k takes on its value in \mathbb{W}_k . Yields $\mathbb{W} = \mathbb{W}_1 \times \mathbb{W}_2 \times \cdots \times \mathbb{W}_k$ 'signal space'

How do we express the 'laws'?

SYSTEM (continued)

Classical framework:

some of w_k 's act as inputs, causes, stimuli, the other w_k 's act as outputs, effects, responses.

system = I/O map transfer function, etc.

internal initial conditions \rightarrow familiar I/S/O representation

$$\frac{d}{dt}x = f(x, u), \quad y = h(x, u)$$

via output to input cascade + feed-back interconnection : complex systems

very successful framework in signal processing, control, simulation, etc.

SYSTEM (continued)

Limitations:

- cause/effect, stimulus/response is often simply not physical!
- very awkward framework for use in first principles modeling: what is the signal flow graph?
- not well-suited for computer assisted 'object oriented' modeling!!!
- unnecessarily limits model representations.

THE BEHAVIOR

The behavioral approach takes the feasible trajectories

$$w:\mathbb{T} o\mathbb{W}$$

$$w=(w_1,w_2,\cdots,w_q)$$

as the object of study.

Totality of feasible trajectories = \mathfrak{B} the 'behavior'; $\mathfrak{B} \subset \mathbb{W}^T$

 $w \in \mathfrak{B}$: the system allows the trajectory $w = (w_1, w_2, \cdots, w_q)$

 $w \notin \mathfrak{B}$: the system forbids the trajectory $w = (w_1, w_2, \dots, w_q)$

Note: in I/O-systems $\mathfrak{B} = \text{all } (u, y)$ -pairs.

Note: analogy with formal language: some words OK, some words not OK.

THE BEHAVIOR (continued)

'Word' examples

- Planetary orbits
- Port behavior of an electrical circuit

• Force/position behavior in mechanical systems

other frameworks, that have yielded away from I/O modeling:
 across/through variables
 (bondgraphs)
 intensive/extensive variables
 (thermodynamics)
 formal languages, PDE's
 (cs, physics)

BEHAVIORAL EQUATIONS

Differential equations

$$(\mathbb{T}=\mathbb{R},\mathbb{W}=\mathbb{R}^{\mathtt{w}}),$$

$$F(w(t), \frac{dw}{dt}(t), \cdots, \frac{d^nw}{dt^n}(t)) = 0$$

 $model \cong F$.

Linear case

$$R_0w\!+\!R_1rac{dw}{dt}(t)\!+\!\cdots\!+\!R_nrac{d^nw}{dt^n}(t)=0$$

 R_0, R_1, \dots, R_n : constant matrices = model parameters.

behavior = all solutions

BUT! Models are seldomly given this way!

Auxiliary variables !!!

LATENT VARIABLES

Behavioral equations:

$$F(w(t),rac{dw}{dt}(t),\cdots,rac{d^nw}{dt^n}(t),\ \ell(t),rac{d\ell}{dt}(t),\cdots,rac{d^n\ell}{dt^n}(t))=0$$

Behavior: all 'solutions' $w : \mathbb{R} \to \mathbb{W}$ that is, all $w : \mathbb{R} \to \mathbb{W}$, for which there exists $\ell : \mathbb{R} \to \mathbb{L}$, such that (w, ℓ) is a solution.

w: 'manifest' variables ℓ : 'latent' variables

Example:

$$rac{d}{dt}x = f(x,u), y = h(x,u)$$
 $w = (u,y)$

x: latent, (u, y): manifest.

Latent \cong internal, but internal \neq state.

INTERCONNECTED SYSTEM

Graph with leaves

nodes = modules

edges = connections

= pairing of terminals

leaves = external terminals

Think about an electrical circuit

MODELING

A computer-assistance oriented procedure for obtaining a model for an interconnected system

Central notions involved:

- terminals
- modules
- interconnection architecture

•••••

modules = building blocks

terminals = links between subsystems carry variables that vary with time

interconnection = the way the subsystems architecture are linked

TERMINALS

A terminal is specified by its type.

The type implies an ordered set of variables.

Examples

Type of terminal	Variables
electrical	(voltage, current)
mechanical (1-D)	(force, position)
mechanical (2-D)	(force, torque,
	position, attitude)
thermal	(temp, heat flow)
fluidic	(pressure, flow)
m-dim input	(u_1,u_2,\cdots,u_m)
p-dim output	(y_1,y_2,\cdots,y_p)
etc.	etc.

MODULES

A module is specified by its type, its representation and its parameter values.

The type specifies an ordered set of terminals (t_1, t_2, \dots, t_n)

This specifies an ordered set of variables (w_1, w_2, \dots, w_n)

The representation specifies the behavior of these variables.

This representation contains parameters. The *parameter values* specify their values.

By specifying a module we obtain the behavior of the variables (w_1, w_2, \dots, w_n) on the terminals of the module.

MODULES (continued)

Examples

Module	Repr.	Par. value
resistor	imp	R in ohms
resistor	adm	G in mhos
cap	default	C in farad
Δ	default	R in ohms
transformer	default	turns ratio
m-port Imp	tf. fn.	$G \in \mathbb{R}^{m imes m}(\xi)$
m-port imp	state repr.	(A,B,C,D)
m-port imp	kernel repr.	$R \in \mathbb{R}^{m imes 2m}[\xi]$
m-port imp	im repr.	$M \in \mathbb{R}^{2m imes m}[oldsymbol{\xi}]$
mass	default	m in kgr
pendulum	default	m and L
2 inlet tank	default	geometry
(m,p) lin sys	state repr.	(A,B,C,D)
etc.	etc.	etc.

MODULES (continued)

 $ext{terminals} = (t_1, t_2) \ t_1, t_2: ext{both electrical} \ t_1 o (V_1, I_1), \ t_2 o (V_2, I_2) \ ext{behavioral equations:}$

$$V_1 - V - 2 = RI_1, \ I_1 = I_2$$

•••••

terminals= (t_1, t_2) behavioral equations

$$Crac{d}{dt}(V_1-V_2)=I_1,\; I_1=I_2$$

•••••

terminals= (t_1, t_2, t_3) latent variables: I'_1, I'_2, I'_3 behavioral equations:

$$egin{aligned} V_1 - V_2 &= RI_3', V_2 - V_3 &= RI_1', V_3 - V_1 &= RI_2' \ I_1 &= I_3' - I_2', I_2 &= I_1' - I_3', I_3 &= I_2' - I_1' \end{aligned}$$

MODULES (continued)

terminals= $(t_1, t_2, \dots, t_m, \text{ground})$ all electrical latent variables: xbehavioral equations:

$$egin{split} rac{d}{dt}x &= Ax + BI', \ V' &= Cx + DI' \ (I_1, \cdots, I_m, I_{m+1}) &= (I_1', \cdots, I_m', -I_1' - I_2' \cdots - I_m') \ (V_1, \cdots, V_m, V_{m+1}) &= (V_1' + V, \cdots, V_m' + V, V) \end{split}$$

INTERCONNECTION ARCHITECTURE

The interconnection architecture is a list of terminal pairs

Connect	
t' t''	
<i>t'''</i>	<i>t''''</i>
etc.	etc.
etc.	etc.

 $\{t',t''\}$ can be such a pair only if the type of t' is suitably adapted to the type of t''

"adapted"

- \rightarrow same type (electrical, mechanical, thermal)
- \rightarrow output to input for 'logical' connections.

INTERCONNECTION ARCHITECTURE (continued)

The interconnection architecture imposes restrictions on the variables 'living' on the associated terminals.

Electrical: $t' \rightarrow V', I', t' \rightarrow V'', I''$ restriction: V' = V'', I' + I'' = 0

1-D mechanical:

 $t' \rightarrow F', q', \quad t'' \rightarrow F'', q''$ restriction: $F' + F'' = 0, \quad q' = q''$

2-D mechanical:

 $t' \to x', y', \theta', X', Y', T'$ $t'' \to x'', y'', \theta'', X'', Y'', T''$ restriction: $x' = x'', y' = y'', \theta' = -\theta'', X' + X'' = 0, Y' + Y'' = 0$ T' = T''

thermal $t' \to T', Q', t' \to T'', Q''$ restriction: T' = T'', Q' + Q'' = 0

logical $t' \to u'$, $t' \to y''$ restriction: y=u

MODEL GENERATION

So in order to obtain a model specify:

- Modules M_1, M_2, \dots, M_N type + representation + parameter values. This yields a list of terminals t_1, t_2, \dots, t_N and a behavior \mathfrak{B}' for the variables living on the terminals.
- Interconnection architecture on t_1, t_2, \dots, t_N this yields a behavior \mathfrak{B}'' for the variables living on the terminals
- $\mathfrak{B}' \cap \mathfrak{B}''$ = the behavior of the interconnected system contains latent variables and manifest variables.
- Elimination of latent variables →

I/O and INTERCONNECTIONS

Consider 2 tanks:

$$egin{array}{ll} rac{d}{dt}h_1 &= F_1(h_1,p_1,p_2) \ f_1 &= H_1(h_1,p_1) \ f_2 &= H_2(h_1,p_2) \ ext{input: } p_1,p_2 \ ext{output: } f_1,f_2 \end{array} egin{array}{ll} rac{d}{dt}h_2 &= F_3(h_3,p_3,p_4) \ f_3 &= H_3(h_3,p_3) \ f_4 &= H_4(h_3,p_4) \ ext{input: } p_3,p_4 \ ext{output: } f_3,f_4 \end{array}$$

Interconnection: $p_2 = p_3, f_2 + f_3 = 0$

input=input; output=output

very many such examples (e.g., in mechanics, heat transfer)

RLC circuit (continued)

Module	type	terminals	par. value
I	connector	1,3,4	
II	capacitor	5,6	$oldsymbol{C}$
III	resistor	7,8	R_C
IV	resistor	9,10	R_L
V	inductor	11,12	L
VI	connector	13,14,2	

Architecture: connect terminals

3	5
4	7
6	9
8	11
10	13
12	14

RLC circuit (continued)

Each terminal has two real variables: voltage V, current I.

Generate the behavioral equations via module laws & interconnections:

Modules	
$I_1 + I_3 + I_4 = 0$	$V_1=V_3=V_4$
$I_2 + I_{13} + I_{14} = 0$	$V_2=V_{13}=V_{14}$
$I_5+I_6=0$	$Crac{d}{dt}(V_5-V_6)=I_5$
$I_7 + I_8 = 0$	$V_7 - V_8 = R_C I_7$
$I_9 + I_{10} = 0$	$V_9 - V_{10} = R_L I_9$
$I_{11} + I_{12} = 0$	$V_{11} - V_{12} = L \frac{d}{dt} I_{11}$

Interconnections	
$V_3=V_5$	$I_3 = -I_5$
$V_4=V_7$	$oxed{I_4=-I_7}$
$V_6=V_9$	$I_6 = -I_9$
$V_8=V_{11}$	$I_8=-I_{11}$
$V_{10}=V_{13}$	$oxed{I_{10} = -I_{13}}$
$V_{12} = V_{14}$	$m{I_{12} = -I_{14}}$

Model for V_1, I_1, V_2, I_2 : manifest, $V_3, I_3, \dots, V_{14}, I_{14}$: latent.

RLC circuit (continued)

! Eliminate $V_3, I_3, \cdots, V_{14}, I_{14}$!

After suitable manipulations, we obtain:

CART with DOUBLE PENDULUM	-
! Model relation between u and y .	

View as interconnection of 5 modules

 M_1 : pointmass with 2 rigid pins and 1 hinge terminals (t_1, t_2, t_3) 2-D mechanical

 M_2 : pendulum with rigid bar and 1 hinge terminals (t_4, t_5) 2-D mechanical

 M_3 : pendulum with rigid base terminal (t_6) 2-D mechanical

 M_4 : horizontal drive terminal (t_7) 2-D mechanical

 M_5 : horizontal free motion pin terminal (t_8) 2-D mechanical

Interconnection architecture

Connect	
$oldsymbol{t}_1$	t_7
t_2	t_8
t_3	t_4
t_5	t_6

Description of modules

 M_1 : pointmass with 2 rigid pins and 1 hinge parameter values $\underline{\text{mass}}$, $\underline{\Delta\theta}$

variables:

$$x_1, \ y_1, \ \theta_1, \ X_1, \ Y_1, \ T_1 \ x_2, \ y_2, \ \theta_2, \ X_2, \ Y_2, \ T_2 \ x_3, \ y_3, \ \theta_3, \ X_3, \ Y_3, \ T_3$$

latent variables:

$$x, y, \theta, X, Y$$

Behavioral equations:

$$egin{array}{ll} x_1 &= x_2 = x_3 = x \ y_1 &= y_2 = y_3 = y \ heta_2 &= heta_1 + \underline{\Delta heta} \ X &= X_1 + X_2 + X_3 \ Y &= Y_1 + Y_2 + Y_4 \ rac{ ext{mass}}{ ext{d}t^2} &= X \ rac{ ext{mass}}{ ext{d}t^2} &= Y \ T_1 + T_2 &= 0 \ T_3 &= 0 \end{array}$$

 M_2 : pendulum with rigid base and one hinge parameter values length, <u>mass</u>

variables:

$$x_1, \ y_1, \ \theta_1, \ X_1, \ Y_1, \ T_1 \ x_2, \ y_2, \ \theta_2, \ X_2, \ Y_2, \ T_2$$

latent variables:

$$x, y, \theta, X, Y$$

Behavioral equations:

$$egin{array}{ll} x_1 &= x - \operatorname{\underline{length}} \cos heta_1 \ x_2 &= x \ y_1 &= y - \operatorname{\underline{length}} \sin heta_1 \ y_2 &= y \ X &= X_1 + X_2 \ Y &= Y_1 + Y_2 \ & \operatorname{\underline{mass}} rac{d^2 x}{dt^2} &= X \ & \operatorname{\underline{mass}} rac{d^2 y}{dt^2} &= Y - \operatorname{\underline{mass}} g \ & \operatorname{\underline{mass}} (\operatorname{\underline{length}})^2 rac{d^2 heta}{dt^2} &= T_1 - \operatorname{\underline{mass}} g \ & \operatorname{\underline{length}} \cos heta_1 \ T_2 &= 0 \end{array}$$

 M_3 : Pendulum with rigid base parameter values: length, <u>mass</u>

variables:

$$x, y, \theta, X, Y, T,$$

behavioral equations:

$$\begin{array}{l} \underline{\text{mass}} \; \frac{d^2x}{dt^2} \; = X \\ \underline{\text{mass}} \; \frac{d^2y}{dt^2} \; = Y - \underline{\text{mass}} \; g \\ \underline{\text{mass}} \; (\underline{\text{length}})^2 \; \frac{d^2\theta}{dt^2} \; = T - \underline{\text{mass}} \; g \; \underline{\text{length}} \; \cos\theta \end{array}$$

 M_4 : horizontal drive external force input $u: \mathbb{R} \to \mathbb{R}$ variables:

$$x, y, \theta, X, Y, T$$

behavioral equations:

$$y = 0$$

 $\theta = 0$
 $X = u$
 $Y = 0$
 $T = 0$

 M_5 : horizontal free motion

variables:

$$x, y, \theta, X, Y, T$$

behavioral equations:

$$y = 0$$

 $\theta = -\frac{\pi}{2}$
 $X = 0$
 $T = 0$

Write the interconnection laws:

For each interconnection, the 2-D mechanical interconnection laws:

$$x' = x''$$
 $y' = y''$
 $\theta' = -\theta''$
 $X' = -X''$
 $Y' = -Y''$
 $T' = T''$

etc., etc.

DOUBLE PENDULUM CART (continued)
After suitable manipulations, we obtain:

ELIMINATION

Consider

$$R(\frac{d}{dt})w = M(\frac{d}{dt})\ell \tag{\star}$$

w: w-dimensional, ℓ : 1-dimensional

$$egin{aligned} R \in \mathbb{R}^{ullet imes imes} [\xi], \ M \in \mathbb{R}^{ullet imes 1} [\xi] \ R(\xi) = R_0 + R_1 \xi \cdots R_n \xi^n \ M(\xi) = M_0 + M_1 \xi \cdots M_n \xi^n \end{aligned}$$

•••••

Define

$$\mathfrak{B}_{\mathrm{full}} = \left\{ w: \; \mathbb{R} o \mathbb{R}^{\scriptscriptstyle \mathbb{W}} imes \mathbb{R}^{\scriptscriptstyle \mathbb{I}} | \; (\star) \; \mathrm{holds}
ight\}$$

 $\mathfrak{B} = \{w | \text{ there is an } \ell \text{ such that } (\star) \text{ holds} \}$

ELIMINATION (continued)

Questions:

• Is **3** described by a constant-coefficient differential equation?

i.e., is there $R' \in \mathbb{R}^{\bullet \times w}[\xi]$ such that

$$R'(rac{d}{dt}) = 0 \quad R' \in \mathbb{R}^{ullet imes \mathtt{W}}[\xi]$$

is a kernel representation of **B**?

• If so, find and algorithm

$$(R,M)\mapsto R'$$

• Nonlinear, PDE generalizations?

ELIMINATION (continued)

Theorem:

There indeed exists an R' such that

B is the solution set of

$$R'(rac{d}{dt})w=0$$

Projection of linear differential behavior = same!

•••••

Algorithm for computing R':

 $n \in \mathbb{R}^{1 imes ullet}$ is annihilator for M if nM = 0.

Set of annihilators = module;

finitely generated

Generators = (n_1, n_2, \cdots, n_g) ;

defines matrix N

R' = NR.

To be made into computer algebra

Pseudocode for elimination

```
function R' = LATELIM(R, M);
```

% Input : Polynomial matrices M and $oldsymbol{R}$ with same number of rows % Output: Polynomial matrix R' such that $R'(\frac{d}{dt})w=0$ is the manifest % behavior corresponding to the hybrid representation $R(\frac{d}{dt})w = M(\frac{d}{dt})\ell$ % At each step, the degree of one of thew rows of M is decreased by adding a % suitable polynomial combination of other rows. The same operation % is applied to the rows of $oldsymbol{R}.$ When a row of M becomes $\mathbf{0}$, the % corresponding row of R becomes part of R'.

$$[M,R]$$
=Order (M,R) ; % order rows so that rows of M are in decreasing degree order $i=$ rowdim (M) ; $p=i$; $k=1$; while $(\mathrm{all}(M(i,:)==0))$ %check if M has zero rows $R'[k,:]=R[i,:];$ %corresponding rows of R are in K $i=i-1;$ $p=p-1;$ $k=k+1;$ end while $((i\geq 1))$ %reduction procedure if $(\exists \text{ real } n \text{ s.t. } M_{hc}(i,:)=nM_{hc}(i+1:p,:))$ then % check if highest coefficient

 $nM_{hc}(i+1:p,:))$ then

is linearly dependent

% from those of rows of lower or equal degree

h = polann(n, M); %polynomial vector to reduce degree

$$m = M(i,:) - hM(i+1:$$

p,:); % degree(m) < degree(M(i,:))</pre>

$$r = R(i,:) - hR(i+1:p,:$$

); %same combination on $oldsymbol{R}$

$$[M,R] = \text{Eliminate}(M,R,i);$$

% eliminate row

if
$$(m \neq 0)$$
 then $[M,R,j] = \operatorname{Insert}(M,R,m,r)$; % insert m and r as j -th

row of M and $oldsymbol{R}$

% so as to keep rows of M ordered by degree

$$i = j;$$

% else % the combination of rows of $oldsymbol{M}$ is zero

$$R'[k,:] = r$$
 %combination

of rows of $oldsymbol{R}$ in $oldsymbol{K}$

$$i = i - 1; p = p -$$

$$1; \quad k = k + 1;$$
 end

else
$$i = i - 1$$
; end

end

CONTROLLABILITY

The time-invariant system $(\mathbb{R}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_1 \in \mathfrak{B}, w_2 \in \mathfrak{B}$, there exists $t' \geq 0$ and $w \in \mathfrak{B}$

such that

$$w(t) = \left\{egin{array}{ll} w_1(t) & for \ t < 0 \ w_2(t-t') & for \ t \geq t' \end{array}
ight.$$

CONTROLLABILITY (continued)

Questions:

• Is the system described by

$$R(\frac{d}{dt})w = 0$$

controllable?

• Find an effective algorithm for verifying controllability in terms of $R_0, R_1, ..., R_n$ where

$$R(\xi) = R_0 + R_1 \xi + \cdots + R_n \xi^n$$

- Nonlinear, PDE generalizations?
- Application/relevance in control

CONTROLLABILITY (continued)

Theorem:

The following are equivalent

- 1. $R(\frac{d}{dt})w = 0$ defines a controllable system
- 2. $\operatorname{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$
- 3. The behavior **B** is the manifest behavior of

$$w=M(rac{d}{dt})\ell$$

for some $M \in \mathbb{R}^{w \times \bullet}$

B admits an "image representation".

CONTROLLABILITY Verification

Idea

Given R

$$f \in \mathbb{R}^{\bullet \times 1}[\xi]$$
 belongs to the SYZYGY of R if $Rf = 0$

SYZYGY = module, finitely generators $\{r'_1, r'_2, \cdots, r'_g\}$ form matrix R'

annihilators of $R =: \mathcal{N}_R$ annihilators of $R' =: \mathcal{N}_{R'}$

Controllability test:

$$\mathcal{N}_R = \mathcal{N}_{R'}$$
?

 \rightarrow Computer algebra

Pseudocode for verifying controllability

```
function [M, obs] = RPR(D);
% Input : p \times \ell polynomial matrix
\boldsymbol{D}
\% Output: boolean variable obs, p \times
\ell polynomial matrix M
%
% Builds O-degree rows generated by
the rows of M
\% and checks if they have rank=\ell; if
so, output variable obs=1.
% At each step the degree of one row
is decreased by adding a suitable
% polynomial combination of other rows.
This goes on until no lowering
% is possible, or the above condition
is satisfied.
\% Output matrix M is the result of
such reduction.
%
%
   M = D
   M=\operatorname{Order}(M); % order rows in decreasing
```

degree order

obs= $(\operatorname{rank}(M^0) == \ell)$; % check

if 0-degree rows already enough p=rowdim(M);

 $i=p ext{-}\mathrm{rowdim}(M^0)$; % otherwise start from first row of higher degree

while ((not obs) and $(i \ge 1)$)

% Reduce until enough 0-degree rows
or no more reduction possible

if (\exists real n s.t. $M_{hc}(i,:) = n M_{hc}(i+1:p,:)$) then

% check if highest coefficient is linearly dependent

% from those of rows of lower or equal degree

 $h{=}\mathrm{polann}(n,M)$; %polynomial vector to reduce degree

$$m=M(i,:)-hM(i+1:$$

p,:); % degree(m) < degree(M(i,:))</pre>

M = Eliminate(M, i); % eliminate

row

if $(m \neq 0)$ then $[M,j] = \operatorname{Insert}(M,m);$ % if new vector is not

0 insert it as j-th row

% so as to keep rows ordered

by degree

if
$$(degree(m) == 0)$$

then

$$\operatorname{obs=}(\operatorname{rank}(M^0) ==$$

ℓ);

$$i=j-1;$$
 % determine

new row to examine

$$\verb|else|\; i=j \;\; \verb|end|$$

else
$$p = p-1; i = i-1;$$

end

else
$$i=i-1$$
; end

end

```
function ctr=CTRB(R);
%
\% Input: Polynomial matrix oldsymbol{R} with
p rows and q columns
% Output: Boolean varaible ctr=1 if
\ker(R(rac{d}{dt})) is controllable
%
%
   [P, ctr] = RPR(R^T);
    % Check if the O-degree columns
generated by
    \% the columns of R have rank p
   if (not ctr) then
      P = P^T;
      P=COLPRP(P); % Bring P in
column proper form
      if (rowdim(P)>coldim(P)) then
       % if the matrix was not of full
row rank
          [P, ctr] = RPR(P);
          %Check if the O=degree rows
generated by
          % column proper form have
rank=q
      end
   end
```

REPRESENTATIONS

$$R(rac{d}{dt})w=0$$

$$w=M(rac{d}{dt})\ell$$

$$R(rac{d}{dt})w = M(rac{d}{dt})\ell$$

$$E\frac{d}{dt}x + Fx + Gw = 0$$

$$egin{aligned} rac{d}{dt}x &= Ax + Bu \ y &= Cx + Du \ w &pprox (u,y) \end{aligned}$$

$$P(rac{d}{dt})y = Q(rac{d}{dt})u \ w pprox (u,y)$$

$$y = G(s)u \ w pprox (u,y)$$

- ! Algorithms for passing among them
- ! Algorithms for testing various properties! Algorithms for synthesis

SIMULATION

$$R(\frac{d}{dt})w = 0$$

will, of course, have many solutions, due to

- free variables among (w_1, w_2, \cdots, w_m)
- free initial conditions

In order to simulate a response, we need additional data

$$K(rac{d}{dt})w=f\quad f:\mathbb{R} o\mathbb{R}^ullet ext{ given}$$
 $S(rac{d}{dt})w(0)=a\quad a\in\mathbb{R}^ullet ext{ given}$

Does there exist a solution?

Does there exist a unique solution?

If so, algorithm

$$(R, K, S, f, a) \mapsto w$$

full plant behavior)

 $\mathcal{P}_{\mathrm{full}} \ = \ \{(v,c) \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\mathsf{v}+\mathsf{c}}) \mid (v,c) \ \mathrm{satisfies \ the \ plan}$

plant behavior

 $\mathcal{P} \ = \ \{v \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\mathrm{v}}) \mid \exists \ c \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\mathrm{c}}) \ \mathrm{such \ that} \ (v,c) \}$ controlled behavior \mathcal{K} defined by

 $\mathcal{K} = \{v \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{ ext{v}}) \mid \exists \ c \in \mathcal{C} \ ext{such that} \ (v,c) \in \mathcal{P}_{ ext{full}} \}.$

For what $\mathcal{K} \in \mathfrak{L}^{\scriptscriptstyle extsf{V}}$ does there exists a $\mathcal{C} \in \mathfrak{L}^{\scriptscriptstyle extsf{C}}$ that implements K?

 $\overline{\mathcal{C}}$ implements \mathcal{K} if the above rela-

 $\begin{array}{c} \text{tion holds between } \mathcal{C} \text{ and } \mathcal{K}. \\ \hline \textit{For what } \mathcal{K} \in \mathfrak{L}^{\text{\tiny V}} \textit{ does there exists a } \mathcal{C} \in \mathfrak{L}^{\text{\tiny c}} \end{array}$ that implements K?

Sheet

hidden behavior and is denoted as \mathcal{N} . It is formally defined as

$$\mathcal{N} = \{v \in \mathcal{P} \mid (v,0) \in \mathcal{P}_{ ext{full}}\}$$
.

Theorem 1 (Controller implementability theorem) : Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{\text{v+c}}$ be the full plant behavior, $\mathcal{P} \in \mathfrak{L}^{\scriptscriptstyle \mathrm{V}}$ the manifest plant behavior, and ${\mathcal N}$ the hidden behavior. Then ${\mathcal K} \in {\mathfrak L}^{\scriptscriptstyle{\mathrm{V}}}$ is implementable by a controller $\mathcal{C} \in \mathfrak{L}^{c}$ acting on the control variables if and only if

$$\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$$
.

Sheet Assume also that the transfer function $G_{(d,u)\mapsto(f,y)}$ associated with $\mathcal{P}_{\text{full}}$ has the following properties:

- (i) $G_{(d,u)\mapsto(f,y)}$ is proper,
- (ii) $G_{u\mapsto f}^{\infty}$ is injective,
- (iii) $G_{d\mapsto y}^{\infty}$ is surjective, and
- (iv) $G_{u\mapsto y}^{\infty}=0$.

Let $\mathcal{N} \in \mathfrak{L}^{d+f}$ be the hidden behavior, and $\mathcal{P} \in \mathfrak{L}^{d+f}$ be the plant behavior associated with $\mathcal{P}_{\text{full}}$. Assume that the behavior $\mathcal{K} \in \mathfrak{L}^{d+f}$ satisfies:

- (v) $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$, i.e., \mathcal{K} is an implementable controlled behavior,
- (vi) in K, d is input and f is output, and
- (vii) the transfer function $K_{d\mapsto f}$ from d to f in $\mathcal K$ is proper.

Then there exists a controller $C \in \mathcal{L}^{u+y}$ such that

- 1. \mathcal{C} implements \mathcal{K} ,
- 2. in C, y is input and u is output, and
- 3. the transfer function $C_{y\mapsto u}$ from y to u in $\mathcal C$ is proper.

SALIENT FEATURES

- Dynamical system = a behavior input/output structure: important special case
- First principles models \implies latent variables
 state variables: important special case
- Control = interconnection
 feedback : important special case
- Modelling complex systems = tearing & zooming input-to-output cascade and feedback: limited special case

terminal	equations
electrical	$m{V}_1 = m{V}_2, \;\; m{I}_1 + m{I}_2 = 0$
1-D mechanical	$egin{aligned} V_1 = V_2, & I_1 + I_2 = 0 \ q_1 - q_2, & F_1 + F_2 = 0 \end{aligned}$
2-D mechanical	$ig x_1 = x_2, \; y_1 = y_2, heta_1 = - heta_2,$
	$X_1 + X_2 = 0, Y_1 + Y_2 = 0, T_1$
thermal	$egin{aligned} T_1 = T_2, \; Q_1 + Q_2 = 0 \ p_1 = p_2, \; f_1 + f_2 = 0 \end{aligned}$
fluidic	$ig p_1 = p_2, \; f_1 + f_2 = 0$
$ $ logical output \rightarrow input	u=y
etc. etc.	etc. etc.

RLC-circuit

Problem: Model the relation between (V_1, I_1, V_2, I_2)

STABILITY

The system

$$R(\frac{d}{dt})w = 0$$

is stable if $(w \in \mathfrak{B}) \Rightarrow (w(t) \rightarrow 0 \text{ for } t \rightarrow \infty)$

Stable ⇔

$$(\lambda \in \mathbb{C} ext{ and } ext{rank}(R(\lambda)) < \mathtt{W}) \Rightarrow (R_{arepsilon}(\lambda) < 0)$$

is stabilizable if for all $w \in \mathfrak{B}$ there is $w' \in \mathfrak{B}$ such that

$$w'(t) = w(t)$$
 for $t < 0$
 $w'(t) \to 0$ for $t \to \infty$

Stabilizable \Leftrightarrow

$$(\lambda \in \mathbb{C} \text{ and } \operatorname{rank}(R(\lambda)) < \operatorname{rank}(R)) \Rightarrow (R_{\varepsilon}(\lambda) < 0)$$

STABILIZABILITY

A plant is stabilizable by a regular control interconnection if and only if

- 1. \mathcal{N} is stable
- 2. \mathcal{P} is stabilizable

Note: \mathcal{N} is stable = "detectability" i.e $c = 0 \Rightarrow w(t) \rightarrow 0$ for $t \rightarrow \infty$