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SALIENT FEATURES

e Dynamical system =
a behavior

input /output structure =
important special case

e First principles models
= latent variables

state variables =
important special case

e Modeling complex systems
— tearing & zooming

i/o cascade and feedback =
limited special case

e Control = interconnection

feedback =

important special case




SYSTEM

Let w;, wo, -+, w, be variables whose
dynamic relation we wish to
describe (modeling), or analyze, or
design (control and synthesis)
Ingredients:

‘Time set’ T

(today, T = R but framework covers
Z, DES, hybrid systems)

wy, takes on its value in Wg.
Yields W =W; X Wy X .-+ X W,

‘signal space’

How do we express the ’laws’?




SYSTEM (continued)

Classical framework:

some of wy’s act as

inputs, causes, stimuli,
the other wy’s act as

outputs, effects, responses.

system = I/O map
transfer function, etc.

internal initial conditions
— familiar I/S/O representation

iw = f(z,u), y=h(z,u)

dt
via output to input cascade + feed-
back interconnection : complex sys-
tems

very successful framework in signal
processing, control, simulation, etc.




SYSTEM (continued)

Limitations:

e cause/effect, stimulus/response is
often simply not physical!

e very awkward framework for use
in first principles modeling: what
is the signal flow graph?

e not well-suited for computer as-
sisted ‘object oriented’ modeling!!!

e unnecessarily limits model rep-
resentations.




THE BEHAVIOR

The behavioral approach takes the
feasible trajectories

w:T—>W

w = (w17w27"'7wq)

as the object of study.

Totality of feasible trajectories = 8
the ‘behavior’; B C WE

w € °*B : the system allows
the trajectory w = (wq, wa,: -, wy)

w & B : the system forbids
the trajectory w = (wq, wa,: -, wy)

Note: in I/O-systems
B = all (u, y)-pairs.

Note: analogy with formal language:
some words OK, some words not OK.




THE BEHAVIOR (continued)

‘Word’ examples

e Planetary orbits

e Port behavior of an electrical cir-
cuit

e Force/position behavior in me-
chanical systems

e other frameworks, that have yielded
away from I/O modeling:
across/through variables

(bondgraphs)
intensive/extensive variables

(thermodynamics)
formal languages, PDE’s

(cs, physics)




BEHAVIORAL EQUATIONS

Differential equations
(T =R, W = R"),
d"w

dt™

Flaw(t), (),

model £ F.

(t)) =0

Linear case

Row+ Ry 2 ()t + Ry 22 () = 0
T “dgn
Ry, R,,---, R,: constant matrices =

model parameters.

behavior = all solutions

BUT! Models are seldomly given this
way!

Auxiliary variables !!!




LATENT VARIABLES

Behavioral equations:

Fla(t), S0, (1),
), (1), (1) = 0

Behavior: all ‘solutions’ w : R - W
that is, all w : R - W, for which
there exists £ : R — L, such that

(w, £) is a solution.

w: ‘manifest’ variables
£: ‘latent’ variables

Example:

%w = f(z,u),y = h(z,u)

w = (uay)

x: latent, (u,y): manifest.

Latent = internal,
but internal # state.




INTERCONNECTED SYSTEM

Graph with leaves
nodes = modules
edges = connections
— pairing of terminals
leaves = external terminals

Think about an electrical circuit




MODELING

A computer-assistance oriented pro-

cedure for obtaining a model for an

interconnected system

Central notions involved:

e terminals

e modules

® interconnection architecture

modules

terminals

interconnection
architecture

building blocks

links between subsystems
carry variables that
vary with time

the way the subsystems
are linked




TERMINALS

A termanal is specified by its type.

The type implies an ordered set of

variables.

Examples

Type of terminal

Variables

electrical

(voltage, current)

mechanical (1-D)

force, position
( , P

mechanical (2-D)

(force, torque,
position, attitude)

thermal (temp, heat flow)
fluidic (pressure, flow)
m-dim input (Uy, Uy ooy Up)
p-dim output (Y15 Y25 Yp)

etc.

etc.




MODULES

A module is specified by its type,
its representation and
its parameter values.

The type specifies an ordered set of
terminals (t1,%2,--,t,)

This specifies an ordered set of vari-
ables (wq, wa, -+, wy,)

The representation specifies
the behavior of these variables.

This representation contains param-
eters. The parameter values specify
their values.

By specifying a module we obtain
the behavior of the variables

(w17 w2, o o o ) wn)
on the terminals of the module.




MODULES (continued)

Examples

Module Repr. Par. value
resistor imp R in ohms
resistor adm G in mhos
cap default C in farad

A default R in ohms
transformer |default turns ratio
m-port Imp | tf. fn. G € R™*™(&)
m-port imp |state repr. |(A4,B,C,D)
m-port imp | kernel repr. | R € R™X?™[¢]
m-port imp |im repr. M € R*™xm ]
mass default m in kgr
pendulum default m and L

2 inlet tank |default geometry
(m,p) lin sys | state repr. | (A,B,C,D)
etc. etc. etc.




MODULES (continued)

terminals = (%, t5)

ti,t> : both electrical

tl — (‘/17[1)7 t2 — (‘/27I2)
behavioral equations:

‘G—V—ZZRIl, I1:I2

terminals=(%,, t,)
behavioral equations

terminals=(%y, ta, t3)
latent variables: I, I, I,
behavioral equations:

Vi—V; = RI},V,—V; = RI,,Vs—V; = RI}
L=I-I,L=I—-I,,I;=I,- I




MODULES (continued)

terminals=(%, ts, - - - , t,,,ground)
all electrical

latent variables: x

behavioral equations:

d
Em:Am—I—BI', V' =Cx + DI

(Ila vooy Iy, Im-l—l) — (I{, e 7I1,n7 _I{_I; vt ._I:n)

(‘/17 R Vma Vm—l—l) — (Vvl,‘|‘va R V,:1+V7 V)




INTERCONNECTION ARCHITECTURE

The interconnection architecture is
a list of
termanal pairs

Connect
tl t”
tlll tllll
etc. | etc.
etc. | etc.

{t’,t"} can be such a pair only if the
type of t’ is suitably adapted to the
type of t”

“adapted”

— same type (electrical, mechan-
ical, thermal)

— output to input for ‘logical’
connections.




INTERCONNECTION ARCHITECTURE (continued)

The interconnection architecture im-
poses restrictions on the variables
‘living’ on the associated terminals.

Electrical: t' — V', I', t' - V", 1"
restriction: V! =V", I'4+ 1" =0

1-D mechanical:
t/ _> F/, ql, t// _> Fl/, qll
restriction: F/ + F" =0, ¢ = q"

2-D mechanical:
! - 2,y ,0,X",Y",T
tll _> a;,ll, y//, 0//, X//, Yll, T/l

restriction: =’ = ",y = ¢y",0 =
_0//, X/ _|_ X// — O, Y/ _|_ Y// —
0 TI — TII

thermal t' — T',Q', t' — T",Q"
restriction: T =T", Q"'+ Q" =0

logical t/ — u/, t' — y”
restriction: y=u




MODEL GENERATION

So in order to obtain a model spec-
ify:

e Modules My, M5, ---, My
type + representation +
parameter values.

This yields a list of terminals #,, £5, - - -

and a behavior B’ for the vari-
ables living on the terminals.

e Interconnection architecture on
t1,l2, ¢, tN
this yields a behavior 8" for the
variables living on the terminals

e B’ (WB"” = the behavior of the
interconnected system
contains latent variables and man-
ifest variables.

e Elimination of latent variables —

B




I/0 and INTERCONNECTIONS

Consider 2 tanks:

%hl — Fl(h17p17p2)
fi1 = Hy(hy, p1)
f2 = Hz(hy, p2)

input: pq, p2
output: fi, f>

%h& — FS(h37p37p4)
fs = H3(hs, ps3)
1= Hy(hs, p4)

input: ps, ps
output: f3, f4

Interconnection: p, = p3, fo + f3 =0

input=input; output=output

very many such examples (e.g., in

mechanics, heat transfer)




RLC circuit

! Model the relation between V;, I, Vs, I5.




RLC circuit (continued)

Module | type terminals | par. value
| connector | 1,3.4

11 capacitor | 5,6 C

111 resistor 7,8 Rc

v resistor 9,10 Ry,

Vv inductor |11,12 L

VI connector | 13,14,2

Architecture: connect terminals

3 |5
4 |7
6 |9
8 |11
10|13
1214




RLC circuit (continued)

Each terminal has two real variables:

voltage V', current 1.

Generate the behavioral equations

via module laws & interconnections:

Modules
nL+1;+1,=0 Vi=Vs=V,
I, + I3+ 114, =0 V= V3=V,
Is + 16 =0 C%(%—%):I&s
I: +1s =0 Vi — Vs = Rcly
Iy +10=0 V9—V10=RL19
Iy + 1,2 =0 Vii — Viz = L 111
Interconnections
Voa=V; | I3 = —1I;
V4 V7 I4 — —I7
Ve =Vy | I¢ = —1I
Ve = Vi | Is = —1Iqy
Vio = Viz | Iio = — I3
Vie = Vig | Li2 = — 114
Model for Vi, I, V,, I,: manifest,

Vv:?h I37 ety ‘/147 I4:

latent.




RLC circuit (continued)

! Eliminate ‘/3, I3, ceey, ‘/14, I14 !

After suitable manipulations, we ob-
tain:




CART with DOUBLE PENDULUM

! Model relation between u and y.




DOUBLE PENDULUM CART (continued)

View as interconnection of
5 modules

M, : pointmass with 2 rigid pins and
1 hinge
terminals (tq, s, t3)
2—D mechanical

M, : pendulum with rigid bar
and 1 hinge
terminals (t4,15)
2—D mechanical

M3 : pendulum with rigid base
terminal (t¢)
2—D mechanical

M, : horizontal drive
terminal (t7)
2—D mechanical

M : horizontal free motion pin
terminal (tg)
2-D mechanical




DOUBLE PENDULUM CART (continued)

Interconnection architecture

Connect
ty | 7
ty | 1s
s | 14
ts | 1




DOUBLE PENDULUM CART (continued)

Description of modules

M;: pointmass with 2 rigid pins
and 1 hinge
parameter values mass, A8

variables:
L1y Y1, 017 Xla }fla Tl
L2, Y2, 027 X27 }f27 T5
L3, Y3, 037 X37 }f37 T3

latent variables:
w? y? 07 X? Y




DOUBLE PENDULUM CART (continued)

Behavioral equations:

rn =9 = T3 =X
Yyi = Y2 =Ys =Y
6, =06, + Ab

X =X+ X2+ X3
Y =Y +Y,+Y,

2
mass fl?;f = X
mass &Y —
ALIAOO dt2 -

n+1, =
T3:




DOUBLE PENDULUM CART (continued)

M, : pendulum with rigid base and
one hinge
parameter values length, mass

variables:

L1y Y1, 017 Xla }fla T
L2, Y2, 027 X27 }f27 T2

latent variables:

w? y? 07 X? Y




DOUBLE PENDULUM CART (continued)

Behavioral equations:

x1 = x — length cos 6,
ro = I
Y1 = y — length sin 6,
Yy2 =Yy
X =X1+ Xy
Y =Y1+Y,
2z

mass Pz = X

mass Zg—g =Y —mass g

mass (length)? % = T} — mass g length cos 6,

T2 =0




DOUBLE PENDULUM CART (continued)

M3: Pendulum with rigid base
parameter values: length, mass

variables:

Ly Y, 07 X7 Y7 T7

behavioral equations:

2

mass CC’%—;’ =X

mass fl—g =Y — mass g
o

mass (length)? &5 = T — mass g length cos6




DOUBLE PENDULUM CART (continued)

M. horizontal drive
external force input u : R —- R
variables:

w7y707X7Y7T

behavioral equations:

y=20
6 =0
X =u
Y =0

T=0




DOUBLE PENDULUM CART (continued)

M. horizontal free motion

variables:
w? y? 07 X? Y’ T
behavioral equations:

y=20
0 = —
X =
T =

13

OON




DOUBLE PENDULUM CART (continued)

Write the interconnection laws:

For each interconnection, the 2-D me-
chanical interconnection laws:

r = I

yl — yll

0/ — 0//
XI — _XII
YI — _YII
Tl — TII

etc., etc.




DOUBLE PENDULUM CART (continued)

After suitable manipulations, we ob-
tain:




ELIMINATION

Consider

d d
R(-)w = M ()¢ ()

w: w-dimensional, £: 1-dimensional

R € R**V[£], M € R***[¢]

R(§) = Ry + Ri&--- R,E"
M(&) = My + MLE--- ME"

Define
Bl = {w : R — R X RY| (%) holds}

B = {w]| there is an £ such that (x) holds}




ELIMINATION (continued)

Questions:

o Is B described by a constant-
coefficient differential equation?

i.e., is there R’ € R**"[¢] such
that
R,(i) —0 RI E ROXW[E]
dt

is a kernel representation of 257

e If so, find and algorithm

(R, M) — R’

e Nonlinear, PDE generalizations?




ELIMINATION (continued)

Theorem:
There indeed exists an R’ such that

B is the solution set of

Projection of linear differential
behavior = same!

Algorithm for computing R’:

n € RY%® is annihilator for M if
nM = 0.

Set of annihilators = module;
finitely generated

Generators = (nq, ng, -+, ny);
defines matrix IN

R = NR.

To be made into computer algebra




Pseudocode for elimination

function R'=LATELIM(R, M) ;

% Input : Polynomial matrices M and
R with same number of rows

% Output: Polynomial matrix R’ such
that R’(%)’w = 0 is the manifest

/A behavior corresponding to the
hybrid representation

% R(£)w = M(£)¢

To

% At each step, the degree of one of
thew rows of M is decreased by adding
a

% suitable polynomial combination of
other rows. The same operation

% is applied to the rows of R. When
a row of M becomes 0, the

% corresponding row of R becomes part

of R'.




[M, R]=Order(M, R);

% order rows so that rows of M
are 1n decreasing degree order

t =rowdim(M); p = 1;

k=1;

while(all(M (z,:) == 0)) ‘check
if M has zero rows
R'[k,:] = RJz,:]; %icorresponding
rows of R are in K
t=1—1; p=p—1; k=
k+ 1;

end

while ((z > 1)) %reduction procedure

if (3 real n s.t. Mp(e,:) =
nMp.(2 4+ 1: p,:)) then

% check if highest coefficient
1s linearly dependent

% from those of rows of lower
or equal degree

h=polann(n, M); %polynomial
vector to reduce degree

m=M(i,:) —hM(1+1:
D,:); % degree(m)< degree(M(i,:))

r = R(1,:)—hR(14+1:p,:

); %same combination on R






[M, R]=Eliminate(M, R,1);

% eliminate row

if (m # 0) then
[M, R, j]=Insert(M, R, m,r);
% insert m and r as j-th
row of M and R
% so as to keep rows of
M ordered by degree

1= J;
else % the combination of
rows of M 1is zero
R'[k,:] = r ‘combination
of rows of R in K
1t = 1—1; p = p—
1;: k=k+41;
end
else 1 =1 —1;
end

end



CONTROLLABILITY

The time-invariant system (R, W, 23)
is siad to be

controllable

if for all w; € B, w, € B,

there exists ¢’ > 0 and
wEe'’B

such that

[ w(t) for t<O0
w(t) = { wy(t — t') for t >t




CONTROLLABILITY (continued)

Questions:
e Is the system described by
d
R(—)w =0
(Z)w
controllable?

e Find an effective algorithm for
verifying controllability in terms

of Ry, R4, ..., R, where
R(§) = Ro+ Ri§ +--- + Ru£")

e Nonlinear, PDE generalizations?

e Application/relevance in control




CONTROLLABILITY (continued)

Theorem:

The following are equivalent

1. R(%)w = 0 defines a control-
lable system

2. rank(R(A)) is independent of A
for A € C

3. The behavior B is the manifest
behavior of

d
w= M(—)¢
di

for some M € R"*®

B admits an “smage representa-
tion”.




CONTROLLABILITY Verification

Idea
Given R

f € R**1[¢] belongs to the
SYZYGY of Rif Rf =0

SYZYGY = module, finitely gen.
generators {r},r},:--, r;}
form matrix R’

annihilators of R =: Ng
annihilators of R’ =: Ny

Controllability test:

NR :NRI?

— Computer algebra



Pseudocode for verifying controllability

function [M ,obs]=RPR(D);

% Input : p X £ polynomial matrix
D
% Output: Dboolean variable obs, pX
¢ polynomial matrix M
To
%» Builds 0O-degree rows generated by
the rows of M
%» and checks if they have rank={¢; if
so, output variable obs=1.
% At each step the degree of one row
1s decreased by adding a suitable
% polynomial combination of other rows.
This goes on until no lowering
% is possible, or the above condition
1s satisfied.
% Output matrix M is the result of
such reduction.
To
To

M =D

M=0Order(M); % order rows in decreasing




degree order
obs=(rank(M?°) == £); % check
1f O-degree rows already enough
p=rowdim(M) ;
t=p-rowdim(M?); Y% otherwise start
from first row of higher degree

while ((not obs) and (¢ > 1))
%» Reduce until enough O-degree rows
or no more reduction possible

if (3 real n s.t. Mp(e,:) =
nMp.(2 4+ 1: p,:)) then

% check if highest coefficient
1s linearly dependent

% from those of rows of lower
or equal degree

h=polann(n, M); %polynomial
vector to reduce degree

m=M(i,:) —hM(1+1:
D,:); % degree(m)< degree(M(i,:))

M =Eliminate(M,2); % eliminate
row

if (m # 0) then
[M, j]=Insert(M, m);
% if new vector is not
O insert it as j-th row
% so as to keep rows ordered



by degree

if (degree(m) == 0)
then
obs=(rank(M?) ==
£);
1t = j—1; ' determine
new row to examine
else ¢+ = 3 end

else p=p—1; 1 =1—1;
end

else 1 =1 —1;
end

end



function ctr=CTRB(R);

To
% Input: Polynomial matrix R with
p rows and g columns
% Output: Boolean varaible ctr=1 if
ker(IiQ%)) is controllable
To
To
[P,ctr]=RPR.(RT) ;
% Check if the O-degree columns
generated by
%» the columns of R have rank p
if (not ctr) then

P = pPT,;

P=COLPRP(P); % Bring P in
column proper form

if (rowdim(P)>coldim(P)) then

% if the matrix was not of full
row rank

[P,ctr]=RPR(P);
%Check if the O=degree rows
generated by
% column proper form have
rank=q
end

end






REPRESENTATIONS

R(%)w =0 w = M(%)E

R(&)w = M(L)e

E%a:—l—Fa:—l—Gw:O

%a::Aa:—l—Bu

y=Cx+ Du

w = (u,y)

P(LHy=Q(L)u
w = (u,y)

y=G(s)u

w = (u,y)

! Algorithms for passing among them
! Algorithms for testing various prop-
erties ! Algorithms for synthesis




SIMULATION

d
R(—)w =0
(2w

will, of course, have many solutions,
due to

e free variables among (wq, wa, -+ -, wy)

e free initial conditions

In order to simulate a response, we
need additional data

d
K(E)w =f f:R— R®*given
d .
S(—)w(0) =a a € R* given
dt
Does there exist a solution?
Does there exist a unique solution?

If so, algorithm

(R,K,S, f,a) —» w




full plant behavior)
Prat = {(v,c) € €°(R,R""°) | (v, c) satisfies the plan

plant behavior

P = {veRR)|Ice€c€R,R) such that (v,c
controlled behavior K defined by
K={vec&€?RR)|Ice€C such that (v,c) € Prn}.

For what K € £' does there exists a C € £°

that implements K?
C wmplements K if the above rela-

tion holds between C and K.
For what K € £' does there exists a C € £°

that implements K?
Sheet

hidden behavior and is denoted as
N. It is formally defined as

N ={veP| (v,0) € Pru}

Theorem 1 (Controller implementability theorem)

Let Psyy € £77¢ be the full plant behavior,
P € £ the manifest plant behavior, and
N the hidden behavior. Then K € £' is
implementable by a controller C € £° acting
on the control variables 1f and only if

NCKCP.




Sheet Assume also that the transfer
function G (4.4)-(f,y) associated with
Pra1 has the following properties:
(i) G(du)(s) 1s Proper,

(ii) G77,; is injective,

oo\ oo L
(iii) GZ,, is surjective, and

(iv) G, = 0.

u—y

Let N € £¢f be the hidden behav-
ior, and P € £* be the plant be-
havior associated with Pgy. Assume
that the behavior K € £%1* satisfies:

(V) N C K C P, ie., K is an imple-

mentable controlled behavior,

(vi) in K, d is input and f is output,
and

(vii) the transfer function Ky ¢ from
d to f in K is proper.

Then there exists a controller C €
£11Y such that

1. C implements IC,

2.in C, y is input and wu is output,
and

3. the transfer function C,,, from
y to u in C is proper.



SALIENT FEATURES

e Dynamical system = a behavior
input /output structure: impor-
tant special case

e First principles models —> la-
tent variables
state variables: important spe-
cial case

e Control = interconnection
feedback : important special case

e Modelling complex systems = tear-
ing & zooming
input-to-output cascade and feed-
back: limited special case

terminal equations

electrical Vi=V,, I1+1,=0

1-D mechanical qi—q2, Fi +F, =0

2-D mechanical T4 = Ta, Y1 = Y,0; = —0O5,
X1+ X2=0, Y1 +Y:=0,1

thermal T, =T, Q:+Q>=0

fluidic p1=p2 i+ f2=0

logical output — input | u=y

etc. etc. etc. etc.




RLC-circuit

Problem: Model the relation between

(‘/17 Ila ‘/27 I2)
STABILITY

The system
R( d ) 0
—w =
dt

is stable if (w € B) = (w(t) —
0 fort — oo

Stable &
(A € C and rank(R(A)) < w) = (R:(A) <
0)

is stabilizable if for all w € B there
is w’ € B such that
w'(t) =w(t) fort<O
w'(t) -0 for t - oo
Stabilizable <
(A € C and rank(R(M\)) < rank(R)) =
(R-(A) < 0)



STABILIZABILITY

A plant is stabilizable by a regular
control interconnection if and only
if

1. N is stable

2. P is stabilizable

Note : N is stable = “detectability”
iec=0= w(t)—0 for t - oo



